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The radiative heat transfer in an axisymmetric enclosure containing an absorbing, emitting, and scatter-
ing gray medium is investigated by using the finite volume method (FVM). Especially, formulations with
the cylindrical base vectors are introduced and its characteristics is discussed by comparing with other
solution methods in the finite volume category. By considering the three-dimensional procedure, the
angular redistribution term, which appears in such curvilinear coordinates as axisymmetric and spheri-
cally symmetric ones, can be treated efficiently without any artifice usually introduced in the conven-
tional discrete ordinates method (DOM). After a mathematical formulation and corresponding
discretization equation for the radiative transfer equation (RTE) are derived, final discretization equation
is introduced by using the directional weight, which is the key parameter in the FVM since it represents
the inflow or outflow of radiant energy across the control volume faces depending on its sign. The present
approach is then validated by comparing the present results with those of previous works. All the results
presented in this work show that the present method is accurate and valuable for the analysis of cylin-
drically axisymmetric radiative heat transfer problems.

� 2008 Elsevier Ltd. All rights reserved.
1. Introduction

For many engineering applications such as boilers, combustors,
and rocket propulsion systems, axisymmetric assumption is usu-
ally made due to its geometric and theoretical simplicity and,
thereby, economic benefits because it physically describes three-
dimensional phenomena with two-dimensional procedure. There-
fore, substantial efforts are exerted to analyze the axisymmetric
problems in the field of radiation as wall as flow and heat transfer
including combustion. During the past few decades, numerous
methods have been proposed to solve the RTE in the axisymmetric
geometry. Among others, the conventional SN DOM was originated
by Carlson and Lathrop [1], and developed and applied to com-
bined heat transfer in axisymmetric geometries by Fiveland [2],
Jamaluddin and Smith [3], and Kim and Baek [4]. Recently, the
FVM is proposed by Chui et al. [5], and further developed by Moder
et al. [6], Kim and Baek [7], and Marthy and Mathur [8]. In these
methods, the RTE is solved for a set of discrete directions spanning
the range of a 4p-solid angle. The total number of equations solved
depends on the degree of angular SN and control angle approxima-
tions, respectively.

As a neutron travels through a curvilinear coordinate systems
such as cylindrical or spherical one, the propagating direction is
ll rights reserved.
constantly varying, even though the neutron does not physically
change its direction. This angular redistribution [9] makes it dif-
ficult to handle the angular derivative term appearing in these
coordinates. To overcome this phenomena so many numerous
treatments are suggested, and here, it can be categorized with 3
methods. The first one is the conventional artifice of Carlson
and Lathrop [1] and Lewis and Miller [9], where recursive relation
for the coefficients amn±1/2 is modeled by examining the diver-
genceless flow condition. Also, Baek and Kim [10] developed a
modified discrete ordinates procedure for the analysis in the axi-
symmetric coordinate following the above artifice. Here, spatial
geometry is discretized following the general two-dimensional
treatments. Another procedure for angular redistribution is a
mapping devised by Chui et al. [5], where axisymmetric spatial
and angular two-dimensional intensity I(r,z,h,/) is transformed
into spatial three-dimensional and angular one-coordinate inten-
sity, i.e. I(r,u0,z,h,uX = 0), where, / and uX are the angular azi-
muthal angle measured from r-axis and x-axis, respectively, and
u0 is the spatial azimuthal angle measured from x-axis. Following
this novel practice, Chui et al. [11] analyzed the pulverized coal
combustion with thermal radiation and Baek and Kim [12] inves-
tigated the rocket plume base heating due to searchlight and
plume emissions. Similar approach is proposed by Moder et al.
[6] for the analysis of non-axisymmetric radiative transfer in
cylindrical enclosures. All the procedures in this category use
the cylindrical base vector as angular coordinate and require
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Nomenclature

amn
I coefficient of the discretization equation in direction m

and n at nodal point I
Cp particle concentration, kg/m3

Dmn
i Dmn

i directional weight in direction m and n at surface i, Eq.
(4), i = n, s, t, b

Dmn�1=2
i angular edge directional weight in direction m and

n ± 1/2 at surface i, Eq. (6), i = e, w
E, W, N, S, T, B east, west, north, and south neighbor control vol-

umes of current control volume P, respectively, see
Fig. 3

e, w, n, s, t, b east, west, north, and south face of the control vol-
ume of P, respectively, see Fig. 3

~er ;~eu0
;~ez cylindrical r-, u0-, and z-direction base vectors, respec-

tively
I radiative intensity [W/(m2 sr)]
Ib blackbody radiative intensity, =rT4/p [W/(m2 sr)]
~ni outward unit normal vector at face i, see Fig. 3
~nw unit normal vector at the wall towards the medium
P present control volume
q radiative heat flux [W/m2], Eq. (1)
~r position vector, ¼~err þ~eu0

u0 þ~ezz
rc, zc cylinder radius and height, respectively [m]
Snr non-radiative volumetric heat source [W/m3], Eq. (18)
~s direction vector, ¼~er sin h cos /þ~eu0

sin h sin /þ~ez cos h
wmn angular weight in the DOM

Greek Symbols
DA, DV surface area and volume of the control volume, respec-

tively

DXmn discrete control angle [sr]
amn±1/2 coefficients of the angular derivative term, Eq. (14)
b extinction coefficient, =ja + rs for gray gas, =

jg,k + jp + rsp

ew wall emissivity
/, uX angular azimuthal angles measured from the x0- and r-

axis, respectively, see Fig. 1
u0 spatial azimuthal angle measured from the x-axis, see

Fig. 1
ja, rs absorption and scattering coefficients of the gray gas,

respectively [m�1]
jg,k kth band absorption coefficient [m�1]
jp, rsp absorption and scattering coefficients of the particle,

respectively [m�1]
l,g,n direction cosines in the r-, u0-, and z-directions, respec-

tively
h angular polar angle measured from the z-axis, see Fig. 4
r Stefan–Boltzmann constant, =5.67 � 10�8 [W/m2 K4]

Subscripts
b blackbody
E, W, N, S, T, B node points where intensities are located
e, w, n, s, t, b control volume faces
w wall

Superscripts
m, n radiation directions
±1/2 control angle faces

Fig. 1. Schematic of the cylindrical enclosure and its coordinate system.
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the spatial three-dimensional calculation for axisymmetric radia-
tion. The final treatment is a spatial two-dimensional procedure
by Murthy and Mathur [8], Tian and Chiu [13], and Ben Salah
et al. [14]. Murthy and Mathur [8] implemented general axisym-
metric geometric and angular relations, discussed its merits by
comparing with the mapping by Chui et al. [5], and applied it
to an unstructured body-fitted mesh system. Tian and Chiu [13]
proposed a two-dimensional scheme for axisymmetric RTE with
the FVM by considering geometric and angular properties of the
axisymmetric situations following the work of Murthy and
Mathur [8], and discussed the control angle overlaps occurring
at the radial side wall of the cylinder. Recently, Ben Salah et al.
[14] investigated the explicit expressions of the recursive relation
coefficients appearing in the discretized angular redistribution
term by using the directional weights.

In this work, a particular implementation of the axisymmetric
FVM is introduced that applies to the problems of radiative heat
transfer within cylindrical enclosures. The medium may be absorb-
ing, emitting, and isotropically or anisotropically scattering. The
gray gas assumption is implicitly used throughout the present article
except for the final example of the mixture of non-gray gas and par-
ticle. The contributions of this work include (1) a new discretization
scheme for axisymmetric problems in the context of the FVM; (2) a
mapping that simplifies the solution of axisymmetric radiative heat
transfer problems and, thereby, spatial two-dimensional and angu-
lar two-dimensional dependence is maintained while angular redis-
tribution term is treated without any artifice to determine the
coefficients; (3) a demonstration of performance for the present
method. In the following, mathematical formulation and corre-
sponding discretization equation for RTE are derived by considering
the mapping procedure that describes the axisymmetric two-
dimensional intensity as spatial three-dimensional one by using
the cylindrical base vectors as both spatial and angular coordinates.
The present approach is then validated by comparing the present re-
sults with an exact solution and the predictions obtained from vari-
ous methods.

2. Mathematical formulation

2.1. Radiative transfer equation

For a radiatively active medium in a cylindrical enclosure as
shown in Fig. 1, the r-directional radiative heat flux is defined as



Fig. 2. Schematic of the mapping for solution of axisymmetric radiative heat tra-
nsfer in a cylindrical enclosure: (a) spatial two-dimensional and (b) three-dimen-
sional distributions. Note that Ij

k in (a) is equal to Ik
j in (b).
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qR
r ¼

Z
X¼4p

Ið~r;~sÞð~s �~erÞdX ð1Þ

where Ið~r;~sÞ is the radiative intensity at position~r ¼~err þ~eu0 u0þ~ezz
in the direction ~s ¼~er sin h cos /þ~eu0 sin h sin /þ~ez cos h, and
dX = sinhdhd/ is the solid angle. The choice of spatial and angular
coordinates defining the position and direction is arbitrary. In this
study, however, it is noted that the spatial (r,u0,z) and angular
(h,/) coordinates are selected and defined based on the cylindrical
base vectors ~er , ~eu0 , and ~ez. In this case, since the direction of ~er

and ~eu0 changes as the spatial azimuthal angle u0 changes, the
direction~s defined by a set of (h,/) changes as u0 changes as shown
in Fig. 1. Therefore, it can be found that the angular azimuthal an-
gles, / and uX, defined relative to cylindrical and Cartesian coordi-
nates, respectively, are related to the spatial azimuthal angle, u0

through the relation of / = uX � u0.
To obtain the radiative heat flux the radiative intensity at any

position, ~r, along a path, ~s, through an absorbing, emitting, and
scattering medium can be evaluated from the following cylindrical
RTE [5–7]:

1
r

o

or
½lrIð~r;~sÞ� þ 1

r
o

ou0
½gIð~r;~sÞ� þ o

oz
½nIð~r;~sÞ� � 1

r
o

o/
½gIð~r;~sÞ�

¼ �bð~rÞIð~r;~sÞ þ jað~rÞIbð~rÞ þ
rsð~rÞ
4p

Z
X0¼4p

Ið~r;~s0ÞdX0 ð2Þ

Here, l = sinhcos/, g = sinhsin/, and n = cosh are the direction co-
sines of a path,~s, and bð~rÞ ¼ jað~rÞ þ rsð~rÞ is the extinction coefficient
of the participating medium, where, jað~rÞ and rsð~rÞ are the absorp-
tion and scattering coefficients, respectively. Here, it is noted that
for the case of axisymmetric situation the o/ou0 term in Eq. (2) is
eliminated, and then, the dependency on spatial three-dimension
and angular two-dimension of the intensity I(r,u0,z,h,/) is changed
to the 2-spatial and 2-angular coordinates, i.e., I(r,z,h,/). For a dif-
fusely emitting and reflecting wall the above RTE is subject to the
following boundary condition:

Iwðrw;~sÞ ¼ ewIbðrwÞ þ
1� ew

p

Z
~nw �~s0<0

Iðrw;~s0Þj~nw �~s0jdX0 for ~nw �~s > 0

ð3Þ

In Eqs. (2) and (3), subscripts b and w denote the black body and
bounded wall, respectively. rw is the radial distance to the bounded
wall and ~nw is the unit normal vector towards medium at the
bounding cylindrical wall as shown in Fig. 1.
2.2. Finite volume formulations

Our intent is to solve the radiative heat transfer problems using
a two-dimensional mesh on the r � z (that is, u0 = 0) plane as
shown in Fig. 2a. To formulate the discretization equation describ-
ing the axisymmetric behavior, however, three-dimensional con-
trol volume shown in Fig. 2b is considered firstly, and then the
axisymmetric solution method is discussed. As previously dis-
cussed, the axisymmetric radiative heat transfer occurs when the
intensity is independent of spatial azimuthal angle u0 and is there-
fore completely specified by r, z, h, and /. Thereby, the intensity
Ið~r;~sÞ is expressed as I(r,z,h,/). The intensities denoted by I1

2, I1
3,

I1
4, and I1

5 shown in Fig. 2b all have the same radius of r. The spatial
azimuthal angle between all consecutive points is p/4. The nodal
points, 2, 3, 4, and 5 are located at u0 = 7p/8, 5p/8, 3p/8, and p/8,
respectively, where u0 is measured from the positive x-axis. The
angular azimuthal angle measured from Cartesian x-axis is uX = 0
for all intensities. Therefore, the angle of / = uX � u0 is 9p/8, 11p/
8, 13p/8, and 15p/8 for the intensities I1

2, I1
3, I1

4, and I1
5, respectively.

The intensities at point 1 in Fig. 2a all have the same radius of r, but
are now all located at u0 = p/2 with the angular azimuthal angle of
/ = 15p/8, 13p/8, 11p/8, and 9p/8 for intensities I5

1, I4
1, I3

1, and I2
1,
respectively. Thereby it follows that I1
m and Im

1 have the same value
of r, z, h, and /, where m = 2, 3, 4, and 5, leading to I1

m ¼ Im
1 . A simple

mapping therefore exists between the intensities in Fig. 2a and b.
Here, it is noted that the conventional and modified DOM
[2,3,10] calculates intensities Im

1 in Fig. 2a with the cylindrical base
vectors to define the angular range, and hence suffers from a direc-
tional coupling expressed in terms of angular redistribution. In the
FVM by Chui et al. [5], however, the intensities I1

m in Fig. 2b are
computed, and hence, can avoid difficulties in calculating amn±1/2

terms that arose from the modeling of the angular redistribution.
The present procedure is somewhat similar to the work of Chui
et al. [5] in view of three-dimensional solution procedure, but they
are different in choosing angular coordinates, i.e., (h,uX) in Chui
et al. [5] but (h,/) in the present work. More detailed discussions
regarding selection of the angular coordinates are examined in
the following.

To explain the finite volume formulations in an axisymmetric
enclosure, the first step is to consider the control volume adopted
in this method as shown in Fig. 3, which also shows the radiative
intensities at each nodal point, P, E, W, N, S, T, and B with the unit
normal vectors ~ni at face i. The control volume represented by the
nodal point, P, is enclosed by six control faces denoted by e, w, n, s,t,
and b. By using the cylindrical base vectors, ~s ¼~er sin h cos /þ
~eu0 sin h sin /þ~ez cos h, the unit normal vector at each face is
expressed as ~ni ¼~ernr;i þ~eu0 nu0;i

þ~eznz;i, so that ~nn ¼ �~ns ¼~er ,
~nt ¼ �~nb ¼~ez and ~ne ¼ �~nw ¼ �~eu0 . Fig. 4a shows the polar mth
and azimuthal nth control angle ranging from hm�1/2 to hm+1/2

and from /n�1/2 to /n+1/2, respectively, which is typically used in
the finite volume radiation methods. The angular azimuthal angle
measured from the r-axis can vary from 0 to 2p. Here, it is noted
that the angular azimuthal angle / varies for a different r-axis as
the spatial polar angle, u0, varies as shown in Fig. 3. Thereby, the
intensities at point E and W are represented by Imþ1

E and Im�1
W ,

respectively. Similarly, the intensities at face e and w are expressed
by Imþ1=2

e and Im�1=2
w , respectively. Here, it is explained that the

increment of spatial and angular azimuthal angle is chosen to be
equal to each other, i.e., Du0 = D/. Fig. 4b illustrates the control



Fig. 4. Schematics of the control angle. The angular polar angle h in (a) is measured
from z-axis, while azimuthal angle / in (b) is measured from r-axis. The polar angle
hm is between hm�1/2 and hm+1/2. Note that while the azimuthal angle /n ranges from
/n�1/2 to /n+1/2, the range of angular edge control angle /n+1/2 is between /n and /n+1.

Fig. 3. Schematic of a control volume in a cylindrical enclosure with P located at the
control volume center: (a) top view and (b) side view.
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angle located at an arbitrary point, for example, face w with total
number of control angle of N/ ¼ Nu0 ¼ 4. The / = n + 1/2th control
angle, which is enlarged in Fig. 4b, is an edge control angle ranging
from /n to /n+1.

Attention is now turned to the directional weight at face i = n, s,
t, and b through (m,n)th control angle, Dmn

i , to give further explana-
tion for the current solution method. This directional weight, Dmn

i ,
denotes the inflow or outflow of radiant energy across the control
volume face depending on its sign as defined in the form:

Dmn
i ¼

Z /nþ1=2

/n�1=2

Z hmþ

hm�
ð~s �~niÞ sin hdhd/ ð4Þ

where the unit direction vector,~s, and outward unit normal vector,
~ni, at face i are based on cylindrical coordinates as explained above.
Hereafter, Dmn

i in each control volume face is discretized as:

Dmn
n ¼ �Dmn

s ¼
Z hmþ1=2

hm�1=2
sin2 hdh

Z /nþ1=2

/n�1=2
cos /d/

¼ 1
2
ðhmþ1=2 � hm�1=2Þ � 1

4
ðsin 2hmþ1=2 � sin 2hm�1=2Þ

� �
ðsin /nþ1=2

� sin /n�1=2Þ
ð5aÞ

Dmn
t ¼ �Dmn

b ¼
Z hmþ1=2

hm�1=2
sin h cos hdh

Z /nþ1=2

/n�1=2
d/

¼ 1
2
ðsin2 hmþ1=2 � sin2 hm�1=2Þð/nþ1=2 � /n�1=2Þ ð5bÞ

Based on this spatial and angular considerations, angular deriv-
ative term can be modeled by using the directional weights, which
can be obtained through the integration process over a control vol-
ume DV and a control angle DXmn such that:

�
Z

DX

Z
DV

1
r

o

o/
ðgIÞdV dX ’ DAeDmnþ1=2

e Imnþ1=2
e

þ DAwDmn�1=2
w Imn�1=2

w ð6aÞ

where

Dmnþ1=2
e ¼ �

Z hmþ1=2

hm�1=2
sin2 hdh

Z /nþ1

/n
sin /d/

¼ � 1
2
ðhmþ1=2 � hm�1=2Þ � 1

4
ðsin 2hmþ1=2 � sin 2hm�1=2Þ

� �

� ðcos /n � cos /nþ1Þ ð6bÞ

Dmn�1=2
w ¼

Z hmþ1=2

hm�1=2
sin2 hdh

Z /n

/n�1
sin /d/

¼ 1
2
ðhmþ1=2 � hm�1=2Þ � 1

4
ðsin 2hmþ1=2 � sin 2hm�1=2Þ

� �

� ðcos /n�1 � cos /nÞ ð6cÞ

are the angular edge directional weights at east and west faces and
DAe = DAw = (rn � rs) Dz is the surface area of east and west faces,
respectively. Here, it is necessary to emphasize that the angular
direction /n+1/2 ranges from /n to /n+1 as shown in Fig. 4b. It is
found that this /n+1/2 direction is the angular edge where the
two control angles meet between /n�1/2 < /n < /n+1/2 and
/(n+1)�1/2 < /n+1 < /(n+1)+1/2. Therefore, DAwDmn�1=2

w Imn�1=2
w and

DAeDmnþ1=2
e Imnþ1=2

e represent the inflow and outflow of the radiant
energy through these control faces, i.e., edge control angles, since
Dmn�1=2

w < 0 and Dmnþ1=2
e > 0 are always satisfied regardless of the

spatial u0 locations. Fig. 5 illustrates the angular edge directional



Fig. 5. Schematic representation of the directional weights for Nu0 ¼ N/ ¼ 4 case.
Note that while the directional weights, Dmn

n ¼ �Dmn
s , covers n and s faces, and the

angular edge directional weights, Dmnþ1=2
e and Dmn�1=2

w does e and w faces,
respectively.
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weights, Dmnþ1=2
e and Dmn�1=2

w with Dmn
n ¼ �Dmn

s . Here, it can be found
that Dmnþ1=2

e ¼ �Dmn�1=2
w is satisfied from the geometrical point of

view as shown in Fig. 5. Also, it is noted that Dm1�1=2
w ¼

DmN/þ1=2
e ¼ 0 is always satisfied because the azimuthal angular

range of Dm1�1=2
w and DmN/þ1=2

e are perpendicular to the outward unit
normal vector at each face, i.e.,~nw and~ne. Thereby, the face intensi-
ties Im1�1=2

w and ImN/þ1=2
e are not necessary to specify for the present

computation.
To obtain the finite volume discretized form of the RTE, Eq. (2) is

integrated over a control volume, DV, and a control angle, DXmn,
assuming that the magnitude of intensity is constant within DV
and DXmn, but allowing its direction to vary by following the con-
ventional practice of the FVM [9–11], and then Eq. (6a) is substi-
tuted into the integrated form of Eq. (2). Thereby, the following
equation can be obtained:X
i¼n;s;t;b

Imn
i DAiD

mn
i þ ½DAeDmnþ1=2

e Imnþ1=2
e þ DAwDmn�1=2

w Imn�1=2
w �

þ bImn
P DVDXmn ¼ Smn

P DVDXmn ð7Þ

where DAn = rnD/Dz, DAs = rsD/Dz, and DAt ¼ DAb ¼ pðr2
n � r2

s Þ=2N/

are the surface areas of north, south, top, and bottom faces, respec-
tively. DV ¼ pðr2

n � r2
s ÞDz=2N/ is the volume of the control volume P

and DXmn = (coshm�1/2 � coshm+1/2)(/n+1/2 � /n�1/2) is the discrete
solid angle.

To relate the facial intensity, Imn
i , and the angular edge intensity,

Imn�1=2
i , to the nodal intensity, Imn

I , the following simple step scheme
popularly used in the DOM and FVM is introduced to ensure posi-
tive intensity:

Imn
i Dm

i ¼ Imn
P maxðDmn

i ;0Þ � Imn
I maxð�Dmn

i ;0Þ ð8aÞ
Imnþ1=2
e ¼ Imn

P ð8bÞ
Imn�1=2
w ¼ Imn�1

W ¼ Imn�1
P ð8cÞ

In Eq. (8a), subscript i represents n, s, t and b, while I does the cor-
responding N, S, T and B. By using this scheme, Eq. (7) can be recast
into the following general discretization equation:

amn
P Imn

P ¼
X

I¼N;S;T;B

amn
I Imn

I þ bmn
P ð9aÞ

where

amn
P ¼

X
i¼n;s;t;b

maxðDAiD
mn
i ;0Þ þ bDVDXmn þ DAeDmnþ1=2

e ð9bÞ

am
I ¼maxð�DAiD

mn
i ;0Þ ð9cÞ

bmn
P ¼ Smn

P DVDXmn � DAwDmn�1=2
w Imn�1

P ð9dÞ

Smn
P ¼ jaIb þ

rs

4p

Z
X0¼4p

Ið~r;~s0ÞdX0 ð9eÞ
In these formulations the last terms in Eqs. (9b) and (9d) indicate
the angular flux of radiant energy, which results from the modeling
of angular redistribution term in Eq. (6).

The boundary condition in Eq. (3) for a diffusely reflecting and
emitting wall can be arranged to

Imn
w ¼ ewIb;w þ

1� ew

p

X
m0n0 ;Dm0n0

w <0

Im0n0

w jDm0n0

w j for Dmn
w > 0 ð10aÞ

where

Dmn
w ¼

Z
DXmn
ð~s �~nwÞdX ð10bÞ

is the directional weight at wall and it becomes �Dmn
n , �Dmn

b , and
�Dmn

t at side (r = rc), bottom (z = 0), and top (z = zc) walls of the
cylindrical enclosure, respectively.

An iterative solution is necessary because the source term due
to in-scattering and the boundary conditions depend on the radia-
tive intensity. This iterative solution is terminated when the fol-
lowing convergence criterion is attained:

max Imn
P � Imn;old

P

��� ���=Imn
P

� �
6 10�6 ð11Þ

where Imn;old
P is the previous iteration value of Imn

P . Once the intensity
field is obtained, the radiative heat flux in the radial and axial direc-
tions can be estimated by

qR
r ¼ 2

XNh

m¼1

XN/

n¼1

ImnDmn
n ð12aÞ

qR
z ¼ 2

XNh

m¼1

XN/

n¼1

ImnDmn
t ð12bÞ

This completes the finite volume formulations for the calculation of
radiative heat transfer in the axisymmetric enclosure.

2.3. Solution procedure

The solution procedure is straightforward because the final dis-
cretization equation in Eq. (9) is the spatial two-dimensional form,
which is commonly used in the CFD with combustion and heat
transfer. All the points in the calculation domain are swept along
the direction of radiation propagation. There exist four sweep
directions according to the directional weights Dmn

n and Dmn
t . For

example, when Dmn
n > 0 and Dmn

t > 0, the sweep proceeds from cen-
terline (r = 0) to outer boundary (r = rc) and bottom (z = 0) to top
boundaries (z = zc). This procedure is common in the DOM
[2,3,10] and the FVM [8,13,14].

Another point of view of the solution procedure is the three-
dimensional form followed by Chui et al. [5], in which axisymmet-
ric intensity is transformed into I(r,u0,z,h,uX = 0), i.e., spatial three-
dimensional and angular one-dimensional systems. To explain this
procedure it is helpful to revisit Fig. 2. As explained before, the
intensities in Fig. 2b completely describe the axisymmetric inten-
sity field shown in Fig. 2a. To apply this procedure to the present
method, the intensity in Eq. (9d) Imn�1

P is changed to Imn�1
W (i.e. west

control volume intensity) without any other modification. Then,
above mentioned three-dimensional procedure can be directly
used. Consider an arbitrary constant z-plane as shown in Fig. 2b.
For p > u0 > p/2, i.e. I1

2 and I1
3 in the left side quadrant in Fig. 2b, be-

cause the intensity is influenced by that of the upstream face, the
solution is marched from the outer cylindrical wall to the inner
center point O. Similarly for p/2 > u0 > 0, i.e. I1

4 and I1
5 in the right

side quadrant in Fig. 2b, the calculation procedure is marched from
the inner center point O to the outer cylindrical wall. Along the
horizontal face (y = 0 line) no intensity at the boundary face is re-
quired since Dm2�1=2

w ¼ 0 and DmN/þ1=2
e ¼ 0 as illustrated in Fig. 5.

Strictly speaking, this face is a symmetry face, therefore, physically
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no heat can transport across this surface. This marching procedure
is repeated in any axial z-plane from bottom to top walls when
Dmn

t > 0 or from top to bottom walls when Dmn
t < 0. Here, it is no-

ticed that the present solution procedure is similar to that of Chui
et al. [5] in view of spatial three-dimensional calculation for axi-
symmetric intensity although the present solution method is for-
mulated using the cylindrical base vectors for both spatial and
angular coordinates rather than Cartesian base vectors adopted
by Chui et al. [5].
2.4. Comparison with other solution methods

Recently, various forms of the finite volume and discrete ordi-
nates formulations for the analysis of axisymmetric radiative heat
transfer are suggested by considering the geometric and direc-
tional characteristics of the axisymmetric coordinate. These meth-
ods can be summarized as two categories according to the choice
of the angular base vectors, Cartesian [5–7,13] or cylindrical
[8,14] ones, because, as discussed by Moder et al. [6], the occur-
rence of angular redistribution terms is determined by which
angular coordinates are held fixed during the volume integral of
streaming term, dI/ds, represented in the LHS of Eq. (2). The Carte-
sian angular coordinate employs (h,uX) system which has a fixed
direction~s ¼~ex sin h cos uX þ~ey sin h sin uX þ~ez cos h in (h,uX) coor-
dinates regardless of spatial u0 location, therefore, angular redistri-
bution terms will not occur for the DOM and FVM. The cylindrical
angular coordinate, however, adopts (h,/) system such that angu-
lar direction ~s ¼~er sin h cos /þ~eu0 sin h sin /þ~ez cos h varies with
the spatial u0 location and, therefore, angular redistribution terms
will occur for DOM and FVM.

From this point of view, the two- or three-dimensional proce-
dure adopted in this work can be seen as an alternative form of
the works by Murthy and Mathur [8], Tian and Chiu [13], and
Ben Salah et al. [14] in case of spatial two-dimensional work, and
Chui et al. [5], Moder et al. [6], and Kim and Baek [7] for three-
dimensional procedure.

Attention is now turned to the modeling of the redistribution
terms caused by angular cylindrical coordinate. In the conventional
[2,3] and modified DOM [10], angular derivative term is modeled
using the conventional artifice [1,9], which maintains neutron con-
servation and permits minimal directional coupling:

�1
r

o

o/
ðgIÞ ’ amn�1=2Imn�1=2

P � amnþ1=2Imnþ1=2
P

DXmn ð13Þ

where amn±1/2 is the coefficient for the angular derivative term to be
determined. Here, a recursive relation of the coefficients for the
angular derivative term, amn±1/2, can be determined by examining
the divergenceless flow condition by Carlson and Lathrop [1] and
Lewis and Miller [9] as follows:

amnþ1=2 � amn�1=2 ¼ 2lmnwmn ¼ 2Dmn
r ð14Þ

with an assumption of am1/2 = 0 as a starting point. Then, this
expression provides a recursive relation for determining the con-
stants, amn±1/2. Note that, since the directional weights are analo-
gous to the multiplication of direction cosine by quadrature
weight in the conventional DOM, Eq. (6) corresponds to another
form of the recursive relation [1–3]. In the current procedure, how-
ever, it is not required to determine the amn±1/2 terms because its fi-
nite volume forms are determined from angular and geometric
considerations via angular edge directional weights. From this point
of view, this work is regarded as the generalization of the practice
by Ben Salah et al. [14], where analytical form of the amn±1/2 term
is developed by considering axisymmetric situations in the finite
volume category.
3. Results and discussion

The solution procedures presented above is applied to axisym-
metric radiative heat transfer problems of (1) enclosure with
absorbing–emitting medium, (2) enclosure with anisotropically
scattering medium, (3) rocket plume base heating, (4) furnace with
measured data, (5) furnace with unknown medium temperature,
and (6) enclosure with non-gray gas and particle mixture. For all
cases presented below, (Nr � Nz) number of equally spaced control
volumes are used. The total solid angle 2p is divided into (Nh � N/)
directions with uniform Dhm = hm+ � hm� = 0.5p/Nh and D/n = /n+1/

2 � /n�1/2 = 2p/N/, while spatial azimuthal angle is discretized as
Nu0 ¼ N/ with Du0 = D/.

3.1. Enclosure with absorbing–emitting medium

Based on the present formulations, the problem of a finite cylin-
drical enclosure containing absorbing–emitting medium with con-
stant temperature and absorption coefficient is demonstrated and
compared with the exact solutions. The enclosure with rc = 1m and
zc = 2m is cold (Tw = 0 K) and black (ew = 1), and the enclosed med-
ium is hot as Tg = Tref and has three different absorption coefficients
of ja = 0.1, 1.0, and 5.0m �1. In this example, the exact intensity at
any location within the enclosure is given by the summation of all
the intensities from the enclosure wall as well as local emission of
the medium such as

IðsÞ ¼ Ibwe�jas þ Ibð1� e�jasÞ ð15Þ

where Ib is the blackbody intensity of the homogeneous medium,
and s is the path length. The exact wall heat flux can be obtained
by numerically integrating IðsÞð~s �~nwÞ over all incident solid angles
via Gaussian quadrature numerical integration.

To check the accuracy of each algorithm, the number of control
volume used is kept the same as Nr = 17 and Nz = 33, while for
angular discretization three different angular grid (control angle)
systems of (Nh � N/) = (8 � 6), (12 � 10), and (16 � 14) are applied.
Fig. 6 shows the non-dimensional wall heat flux, q� ¼ qR

r =rT4
ref on

the side wall for three different optical thickness of ja = 0.1, 1.0,
and 5.0 m�1. When the absorption coefficient is as large as
ja = 5.0 m�1, the radiant energy arriving on the wall approaches
black body intensity of the medium Ib ¼ rT4

ref due to heat blockage
effect, i.e. the thick medium absorbs nearly all the radiation from
neighboring medium and the intensity impinging on the wall is
influenced only by the emission of the hot gas near the enclosing
wall. Near the corner, however, a sharp decrease in radiant heat
flux is observed because of the effect of neighboring cold top and
bottom walls. But when absorption coefficient is as small as
ja = 0.1 m�1, the emission of the medium is weak, and the radiant
heat flux is significantly reduced. This is due to the far-reaching ef-
fect of the other cold walls and negligible self-extinction of the
optically thin gas.

Overall, the present solution is found to be accurate compared
with the exact solution. The maximum error between the present
and exact solution is 3.8% at ja = 1.0 m�1 case with (Nh � N/) =
(8 � 6). As the angular grid systems are denser to (Nh � N/) =
(16 � 14) the maximum error reduces to 1.9%. The computation
time required for the calculations shown in Fig. 6 is within 2 s
using a 1.7 MHz personal computer.

3.2. Enclosure with anisotropically scattering medium

The second benchmark case considers a hot side (Ebw = 1) wall
exposed to diffuse incident radiation in a cold medium. All walls
are black (ew = 1). The cylinder has a height of zc = 2m and a radius
of rc = 1 m. The medium has an extinction coefficient b = 1.0 m�1

and single scattering albedo x0 = 1.0. For the case of anisotropic
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scattering, the scattering phase function is approximated by a fi-
nite series of Legendre polynomials as follows:

Um0n0!mn ¼ Uðcos WÞ ¼
XJ

j¼0

CjPjðcos WÞ ð16Þ

where W is the scattering angle between incoming direction~s0 and
outgoing direction~s. Cj’s are the expansion coefficients. The forward
(F2,F3) and backward (B1,B2) scattering phase function as given by
Kim and Lee [15] are considered in addition to isotropic scattering
(U = 1). The asymmetry factors in the phase function for the case
of F2, F3, isotropic, B1 and B2 are 0.670, 0.40, 0.0, �0.188 and
�0.40, respectively [15]. The computational grid used has dimen-
sions of (Nr � Nz) = (13 � 29) and (Nh � N/) = (12 � 12).

Variations of the dimensionless radial radiative heat flux on the
side wall are shown in Fig. 7 for all five phase functions considered
in this study and compared with the works of Jendoubi et al. [16]
and Baek and Kim [10], where S14 DOM and modified DOM are
used, respectively. Fig. 7 shows that the forward-scattering phase
functions give larger heat fluxes than the backward-scattering
phase functions from the side wall to the medium since the back-
ward scattering distributes more radiant energy to the hot side
wall. As shown in Fig. 7 the present results are in good agreement
with the S14 DOM and MDOM and, especially, the present FVM and
MDOM give nearly the same results.

3.3. Rocket plume base heating

The third benchmark case examines an analysis of radiative
base heating by the rocket exhaust plume. This problem has at-
tracted a considerable attention during the past few decades, since
the base plane should be protected against the radiative heating by
the exhaust plume. Its schematic is shown in Fig. 8. The cylindrical
exhaust plume with Zpl = 10Rex is assumed to be cold (Tg = 0 K) and
purely scatters (x0 = 1 and s0 = rsRex) the radiant energy emerging
from the nozzle exit maintained at Tref. The environment is consid-
ered to be cold and non-participating (x0 = s0 = 0). This situation
illustrates a so-called searchlight emission, since the radiation pho-
tons emitted only from the inside of the rocket nozzle is scattered
by the exhaust plume towards the base plane [10,12,17,18]. The
computational domain is taken a rc/Rex = 6 in radius and
zc = Zpl = 10Rex in height. The number of grids used is
(Nr � Nz) � (Nh � N/) = (38 � 48) � (10 � 8). For the case of aniso-
tropic scattering, anisotropic scattering phase function in Eq. (17)
is used.

Fig. 8 shows the effect of scattering phase function on the radi-
ative heating, �q� ¼ �qR

z =rT4
ref on the base plane at z = 0. The radi-

ative heat flux on the base plane is seen to rapidly decrease as r/Rex

increases because the base plane views a smaller portion of the ex-
haust plume. In other words, the view factor toward the exhaust
plume seen by a thin annulus of radius r on the base plane de-
creases with increasing r. For the case of isotropic scattering
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(U = 1), the present FVM solutions are in good agreement with
other solutions by the Monte Carlo [17], backward Monte Carlo
[18], FVM [12], and MDOM [10]. The effect of anisotropic scattering
on the base heating is also shown in Fig. 8. The backward scattering
(B1,B2) is observed to enhance the base heating than the forward
scattering (F2,F3). This is because the photons emitted from the
rocket nozzle are more scattered in the backward direction. It is
noted that the present FVM works very well even when participat-
ing (plume) and non-participating (environment) media coexist.

3.4. Furnace with measured data

The FVM is then applied to a problem of non-swirling natural
gas flame in International Flame Research Foundation test furnace
[19]. A water-cooled cylindrical furnace has rc = 0.45 m in radius
and Zc = 5.0 m in length. The wall temperature and emissivity are
Tw = 425 K and ew = 0.8, while the blackbody inlet (left) and exit
(right) temperatures are 425 K and 300 K, respectively. Measured
temperatures for non-scattering gray medium with absorption
coefficient of ja = 0.3 m�1 are listed in Jamaluddin and Smith [3]
following the work of Wu and Fricker [19].

Many researchers have attempted to model this furnace prob-
lem in order to validate their radiation solution methods, since
well-defined experimental data are available. In Fig. 9 the present
solution for the net radial heat flux on the furnace side wall is com-
pared with other solutions obtained by P3 approximations [20],
conventional S4 DOM [3], FVM [5], and MDOM [10] as well as the
experimental data [19]. Our prediction produces similar results ob-
tained by the others in the distribution of radial heat flux. It must
be noted that the present prediction yields nearly similar solution
by the FVM [12] and MDOM [10] with a similar grid system of
(Nr � Nz) = (3 � 17) and (Nh � N/) = (8 � 12), although we have
used the step scheme for spatial and angular differencing, whereas
Chui et al. [5] used the exponential scheme which is computation-
ally expensive and somewhat more complex.
3.5. Furnace with unknown medium temperature

For many engineering applications, there may exist non-radia-
tive volumetric heat source, Snr, in the medium rather than the
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Fig. 9. Comparison of radial heat flux at the side wall with the experimental and
other predictions. Spatial (Nr � Nz) = (3 � 17) and angular (Nh � N/) = (8 � 12) sys-
tems are used.
medium temperature is given. In this case the divergence of radia-
tive heat flux, which represents a net loss of radiant energy from a
control volume, has to be equal to this source satisfying the follow-
ing equation for energy conservation [21]:

Snr ¼ r � qR ¼ ja 4pIb �
Z

X¼4p
I dX

� �
ð17Þ

The blackbody intensity obtained from the above equation is in-
serted into Eq. (5b) and, thereby, the intensity field could be calcu-
lated. It is noted that when the medium is in radiative equilibrium,
i.e., Snr = 0, temperature distribution of the medium can be obtained
directly from 4pIb ¼

R
X¼4p I dX.

The test furnace has the radius of rc = 1 m and the length of
zc = 4 m. The physical conditions are Tw = 1200 K, ew = 0.85 for bot-
tom wall (z = 0), 400 K and 0.7 for top wall (z = Zc), 900 K and 0.7
for side wall (r = rc). Other properties for the isotropically scatter-
ing medium are x0 = 0.7, Snr = 5.0 kW/m3 and three extinction coef-
ficients are b0 = 0.1, 1.0, and 5.0 m�1. Fig. 10 illustrates a
comparison of the medium temperature at z = 2.0 m for different
optical thicknesses. As the extinction coefficient decreases from
5.0 to 0.1, the temperature of the medium becomes much higher
due to the far-reaching effect of the hot wall. Therefore, the med-
ium temperature becomes more uniform, whereas the tempera-
ture gradient at the side wall is steeper for the case of smaller
optical thickness. In the above, the present solutions are compared
with the results by the modified discrete ordinates solutions [10].
It is noted that the two solutions are almost identical. In these cal-
culations, the same grid system of (Nr � Nz) = (12 � 24) and
(Nh � N/) = (8 � 12) and the step scheme for spatial differencing
are used in both FVM and MDOM.

3.6. Enclosure with non-gray gas and particle mixture

Finally, the present finite volume formulations are applied to
the problem of axisymmetric radiative heat transfer with a two
phase mixture of non-gray gas with particles, which often occurs
in the combustion systems including soot particles and non-gray
combustion products such as H2O and CO2. To model such situa-
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tions with the present approach, some modifications for the gov-
erning RTE are required such that

dIk

ds
¼ �bkIk þwg;kðTgÞjg;kIb;g þwp;kðTpÞjpIb;p

þ rsp

4p

Z
X0¼4p

Ikð~s0ÞUð~s0;~sÞdX0 ð18Þ

where Ik, Ib,g, and Ib,p are the kth band radiative intensity, blackbody
intensity of gas and particles, respectively. bk = jg,k + jp + rsp is the
extinction coefficient, where jg,k is the kth band absorption coeffi-
cient of mixture gases, jp and rsp are the absorption and scattering
coefficients of particles, respectively. In addition, wg,k(Tg) and
wp,k(Tp) are the weighting factor related to the kth gray band and
are functions of gas temperature, Tg, and particle temperature, Tp,
respectively. As suggested and validated by Yu et al. [22], if the
two phase mixture of non-gray gases and particles is not in thermal
equilibrium, and if the gas and particles share all the same kth gray
bands, the weighting factor for particles has the same type as that
for the gas so that wp,k(Tp) = wg,k(Tp). Therefore, for the analysis of
radiative heat transfer by mixtures of non-gray gas and particle,
Eq. (9) is also used by simply changing the extinction coefficient
and source terms due to non-gray gas and particles. To obtain the
non-gray gas absorption coefficients and the associated weighting
factors for gas and particles, the weighted sum of gray gases model
(WSGGM) of Smith et al. [23] is used. The particle absorption and
scattering, however, are assumed gray and obtained from Yu et al.
[22] and Chui et al. [11] such as

jp ¼ ep

X
i

Ni
pd2

i

4
ð19aÞ

rsp ¼ ð1� epÞ
X

i

Ni
pd2

i

4
ð19bÞ

where ep is the particle emissivity, Ni and pd2
i =4 are the number

density and the projected area, respectively, of the particle pertain-
ing to group i. More detailed discussions about the non-gray gas and
particle models used here can be found in Yu et al. [22].
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To validate the present formulations, an axisymmetric enclo-
sure with a two-phase mixture of gas and particle is considered fol-
lowing the work of Yu et al. [22]. A cylindrical enclosure with 1 m
in radius and 2 m in length has 20% H2O, 10% CO2 mixture and par-
ticles. The medium has either no particles or concentration of 0.01
and 0.1 kg/m3, respectively. The black top and bottom walls are
kept cold at 400 K, while the side wall temperature and emissivity
are 1000 K and 0.8. The scattering coefficient rsp is a function of
particle size, number density, and emissivity as in Eq. (4), while
particle scattering which depends on the size and refractive index
of scattering particle and scattering angle is assumed isotropic. In
this work, it is assumed that the particle size is ranged in 50, 60,
70, 80, and 100 lm with 20% each by mass. Also, the particle den-
sity is taken as 1300 kg/m3 with emissivity of 0.8 [22]. Therefore, in
case of Cp = 0.01kg/m3, rsp becomes 0.037 m�1. The gas and particle
temperatures are the same at Tg = Tp = 1000 K. The grid system
used in this example is (Nr � Nz) = (15 � 30) and (Nh � N/) =
(12 � 8). Fig. 11 shows the effect of particle concentration on radi-
ative wall heat flux. It is found that the present solutions are in
good agreement with those of Yu et al. [22].
4. Conclusions

A finite volume method has been proposed to analyze the radi-
ative heat transfer in an axisymmetric cylindrical geometry with
an absorbing, emitting, and scattering medium. Its discretized form
of equation and solution procedure are presented. Different from
the original FVM, the main feature of the present method is the
choice of spatial and angular base vectors, i.e., Cartesian or cylin-
drical one. In order to validate the present formulation, six test
problems are considered and their solutions are compared with ex-
act or other predictions. All the results presented in this work show
that the present method is accurate and valuable for the analysis of
axisymmetric radiative heat transfer problems with radiatively ac-
tive medium including gray, non-gray and particle mixture.
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